(EELS) Data analysis basics

Francisco de la Peña

Diamond Light Source 2nd of March 2020

Outline

Introduction

Introduction

2 Model based quatification

- The integration method
- The curve fitting method
- Multi-dimensional curve fitting
- Practical application: Analytical tomography

3 Machine learning

- Introduction
- EELS core-loss analysis

🗿 Summary

Summary

Outline

Introduction Introduction

2 Model based quatification

- The integration method
- The curve fitting method
- Multi-dimensional curve fitting
- Practical application: Analytical tomography

3 Machine learning

- Introduction
- EELS core-loss analysis

4 Summary

Summary

Why do we care about data processing at all?

Why do we care about data processing at all?

Boron-nitride nano-particles characterisation by EM

Outline

IntroductionIntroduction

2 Model based quatification

• The integration method

- The curve fitting method
- Multi-dimensional curve fitting
- Practical application: Analytical tomography

Machine learning

- Introduction
- EELS core-loss analysis

4 Summary

Summary

EELS spectrum from BN NPs

fjd29@cam.ac.uk (University of Lille)

ePSIC 2020 8 / 55

 $N_{\rm O} \approx \frac{I_{\rm O}(\Delta,\beta)}{2}$

Arenal et al., Ultramicroscopy 2008

• Overlapping edges

э

- Overlapping edges
- It always returns a result (what feels good) but, how do we know that it is correct?

- Overlapping edges
- It always returns a result (what feels good) but, how do we know that it is correct?
- Only analyses a fraction of the available signal (non-optimal SNR)

- Overlapping edges
- It always returns a result (what feels good) but, how do we know that it is correct?
- Only analyses a fraction of the available signal (non-optimal SNR)
- Useful information gets lost (fine structures changes, energy onset shifts...)

Outline

IntroductionIntroduction

2 Model based quatification

• The integration method

• The curve fitting method

- Multi-dimensional curve fitting
- Practical application: Analytical tomography

Machine learning

- Introduction
- EELS core-loss analysis

4 Summary

Summary

The curve fitting method: an example

SrTiO₃ Spectrum

The curve fitting method: an example

$M(E) = AE^{-r}$

fjd29@cam.ac.uk (University of Lille)

ePSIC 2020 12 / 55

• There is a known function, f, that relates the independent variable Xand the dependent variable Y. $Y \approx f(X,\beta) + \varepsilon(f(X,\beta))$

- There is a known function, f, that relates the independent variable X and the dependent variable Y. $Y \approx f(X,\beta) + \varepsilon(f(X,\beta))$
- The number of unknown parameters, β is equal or less thant the number of different observations of the independent variable

- There is a known function, f, that relates the independent variable X and the dependent variable Y. $Y \approx f(X,\beta) + \varepsilon(f(X,\beta))$
- The number of unknown parameters, β is equal or less thant the number of different observations of the independent variable
- The probability distribution of the statistical error (arepsilon) is known

Parametric model of the high energy loss spectrum for elemental and bonding quantification:

$$M(E; \text{parameters}) = AE^{-r} + \left(\sum_{i} N_i f_i(E) \int_0^{q(\beta)} \sigma_i(E, q) dq\right) * L(E)$$

- AE^{-r} : background model
- σ_i^{FS} : cross section of each ionization edge, *i*
- N_i : atoms/nm²
- $f_i(E)$: function that mimics the fine structure of each ionization edge, e.g. gaussian, fingerprints, splines...
- L(E): experimental low loss spectrum.

Why adding the fine structure to the model?

lonization edge fine structure

 In solids, the first ~ 40 eV are strongly modified by the final density of states ⇒ carries bonding information

EELS elemental and bonding maps of BN nanoparticle

Arenal et al., Ultramicroscopy 2008

Image: 1 million of the second sec

fjd29@cam.ac.uk (University of Lille)

Data analysis

ePSIC 2020 17 / 55

EELS elemental and bonding maps of BN nanoparticle

Arenal et al., Ultramicroscopy 2008

Image: A matrix

ePSIC 2020 17 / 55

 \bullet Regression analysis, in addition to estimate the value of $\beta,$ can estimate the error
- Regression analysis, in addition to estimate the value of $m{eta}$, can estimate the error
- The most common estimation method is non-linear least squares *(NLLS)*, however this assumes that the noise is Gaussian distributed

- Regression analysis, in addition to estimate the value of $m{eta}$, can estimate the error
- The most common estimation method is non-linear least squares *(NLLS)*, however this assumes that the noise is Gaussian distributed
- If the noise distribution is known (e.g. Poissonian) we can use:

- Regression analysis, in addition to estimate the value of $m{eta}$, can estimate the error
- The most common estimation method is non-linear least squares *(NLLS)*, however this assumes that the noise is Gaussian distributed
- If the noise distribution is known (e.g. Poissonian) we can use:
 - Weighted non-linear least squares (WNNLS)

- Regression analysis, in addition to estimate the value of $m{eta}$, can estimate the error
- The most common estimation method is non-linear least squares *(NLLS)*, however this assumes that the noise is Gaussian distributed
- If the noise distribution is known (e.g. Poissonian) we can use:
 - Weighted non-linear least squares (WNNLS)
 - Maximum likelihood estimation (ML)

• The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong

- The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong
- In EELS the noise is a mixture of *Poisson and Gaussian noise*.

- The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong
- In EELS the noise is a mixture of *Poisson and Gaussian noise*.
- WNNLS can approximate well Poissonian noise when the number of counts is high enough (almost always in EELS)

- The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong
- In EELS the noise is a mixture of *Poisson and Gaussian noise*.
- WNNLS can approximate well Poissonian noise when the number of counts is high enough (almost always in EELS)
- Non-linear parameter estimation is an iterative process that *is very sensitive to the starting parameters*

• Steele, J., Titchmarsh, J., Chapman, J., and Paterson, J. (1985). A single-stage process for quantifying electron energy-loss spectra. Ultramicroscopy, 17(3):273-276.

- Steele, J., Titchmarsh, J., Chapman, J., and Paterson, J. (1985). A single-stage process for quantifying electron energy-loss spectra. Ultramicroscopy, 17(3):273-276.
- Manoubi, T., Tencé, M., Walls, M. G., and Colliex, C. (1990). Curve fitting methods for quantitative analysis in electron energy loss spectroscopy. Microscopy Microanalysis Microstructures, 1(1):23.

- Steele, J., Titchmarsh, J., Chapman, J., and Paterson, J. (1985). A single-stage process for quantifying electron energy-loss spectra. Ultramicroscopy, 17(3):273–276.
- Manoubi, T., Tencé, M., Walls, M. G., and Colliex, C. (1990). Curve fitting methods for quantitative analysis in electron energy loss spectroscopy. Microscopy Microanalysis Microstructures, 1(1):23.
- Verbeeck, J. and Aert, S. V. (2004). Model based quantification of EELS spectra. Ultramicroscopy, 101(2-4):207-224.

- EELSModel http://www.eelsmodel.ua.ac.be/ (open source)
- HyperSpy http://hyperspy.org (open source)
- Digital Micrograph

Outline

IntroductionIntroduction

2 Model based quatification

- The integration method
- The curve fitting method

• Multi-dimensional curve fitting

Practical application: Analytical tomography

Machine learning

- Introduction
- EELS core-loss analysis

4 Summary

Summary

Non-linear optimisation routine

fjd29@cam.ac.uk (University of Lille)

Data analysis

ePSIC 2020 23 / 55

Non-linear optimisation routine

Non-linear optimisation routine

fjd29@cam.ac.uk (University of Lille)

ePSIC 2020 23 / 55

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

L	

- Set stating parameters.Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

< A

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

Set stating parameters.Fit.

Estimate success probability.

- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

• Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

- Set stating parameters.
- Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

SAMFire

Set stating parameters.

• Fit.

- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

SAMFire

- Set stating parameters.Fit.
- Estimate success probability.
- Move to most promising element.
- Calculate starting parameters from all sucessfully fitted elements.

T. Ostasevicious et al, EMC2016 proceedings

SAMFire parallel fitting example

T. Ostasevicious et al, EMC2016 proceedings

fjd29@cam.ac.uk (University of Lille)

Data analysis

ePSIC 2020 26 / 55

Outline

IntroductionIntroduction

2 Model based quatification

- The integration method
- The curve fitting method
- Multi-dimensional curve fitting
- Practical application: Analytical tomography

Machine learning

- Introduction
- EELS core-loss analysis

4 Summary

Summary

Transmission electron tomography

Radon transform

$$Y_{ heta} = R_{ heta}(X)$$
 $i = -70...70$

Figure from O. Ersen et al., *Materials Today* 18, 2015

Tomography as a constrained optimisation problem

$$Y_{\theta} = R_{\theta}(X) + \text{noise} \quad \theta = -70, \dots, +70$$

fjd29@cam.ac.uk (University of Lille)

Tomography as a constrained optimisation problem

$$Y_{\theta} = R_{\theta}(X) + \text{noise} \quad \theta = -70, \dots, +70$$

$$X^* = \underset{X}{\operatorname{arg\,min}} \left\{ \|R_{\theta}(X) - Y_{\theta}\|_{2}^{2} + \lambda f(X) \right\}$$

fjd29@cam.ac.uk (University of Lille)

Tomography as a constrained optimisation problem

$$Y_{\theta} = R_{\theta}(X) + \text{noise} \quad \theta = -70, \dots, +70$$

$$X^* = \operatorname*{arg\,min}_{X} \left\{ \left\| R_{\theta} \left(X \right) - Y_{\theta} \right\|_{2}^{2} + \lambda f(X) \right\}$$

Useful regularisation functions are:

- L₁ norm: promotes sparsity
- Total variation: promotes sparsity in the gradient

For EM applications see:

- Leary, Rowan, et al. , Ultramicroscopy 131 (2013)
- Goris, Bart, et al. , Ultramicroscopy 113 (2012)

Outline

Introduction Introduction

2 Model based quatification

- The integration method
- The curve fitting method
- Multi-dimensional curve fitting
- Practical application: Analytical tomography

3 Machine learning

- Introduction
- EELS core-loss analysis

4 Summary

Summary

э.

Image: A match a ma

2

3

Image: A math a math

fjd29@cam.ac.uk (University of Lille)

ePSIC 2020 32 / 55

3

э.

Image: A match a ma

fjd29@cam.ac.uk (University of Lille)

ePSIC 2020 32 / 55

3

Image: A mathematical states and a mathem

fjd29@cam.ac.uk (University of Lille)

Data analysis

ePSIC 2020 32 / 55

3

イロト イヨト イヨト

(Human / Machine) learning electron microscopy

Human learning :

$$i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r},t) = \left[\frac{-\hbar^2}{2\mu} \nabla^2 + V(\mathbf{r},t)\right] \Psi(\mathbf{r},t)$$

fjd29@cam.ac.uk (University of Lille)

Data analysis

ePSIC 2020 33 / 55

(Human / Machine) learning electron microscopy

Human learning : Machine learning :

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left[\frac{-\hbar^2}{2\mu}\nabla^2 + V(\mathbf{r},t)\right]\Psi(\mathbf{r},t)$$
$$H \cdot X = Y$$

(Human / Machine) learning electron microscopy

Human learning : Machine learning :

$$i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left[\frac{-\hbar^2}{2\mu}\nabla^2 + V(\mathbf{r},t)\right]\Psi(\mathbf{r},t)$$
$$H \cdot X = Y$$

Outline

Introduction Introduction

2 Model based quatification

- The integration method
- The curve fitting method
- Multi-dimensional curve fitting
- Practical application: Analytical tomography

Machine learning

- Introduction
- EELS core-loss analysis

4 Summary

Summary

Spinodally decomposed SnO_2/TiO_2 multilayers

fjd29@cam.ac.uk (University of Lille)

< AP

э

Spinodally decomposed SnO_2/TiO_2 multilayers

< A[™]

fjd29@cam.ac.uk (University of Lille)

Data analysis

$[a_{i,j}]_{10000\times(64\times64)} = [u_{i,j}]_{(10000)\times4} \times [v_{i,j}]_{4\times(64\times64)}$

 $[a_{i,j}]_{10000\times(64\times64)} = [u_{i,j}]_{(10000)\times4} \times [v_{i,j}]_{4\times(64\times64)}$

fjd29@cam.ac.uk (University of Lille)

Data analysis

Blind source separation

$$\begin{bmatrix} a_{i,j} \end{bmatrix}_{l \times l} \times S = \tilde{S}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \times \begin{bmatrix} \widetilde{a}_{1,j} \\ \widetilde{a}_{2,j} \\ \widetilde{a}_{3,j} \\ \widetilde{$$

fjd29@cam.ac.uk (University of Lille)

Data analysis

ePSIC 2020 38 / 55

3

Blind source separation

ePSIC 2020 38 / 55

Noisy linear mixing

$[a_{i,j}]_{10000\times(64\times64)} = [u_{i,j}]_{(10000)\times4} \times [v_{i,j}]_{4\times(64\times64)}$

fjd29@cam.ac.uk (University of Lille)

ePSIC 2020 39 / 55

Noisy linear mixing

$[a_{i,j}]_{10000\times(64\times64)} = [u_{i,j}]_{(10000)\times4} \times [v_{i,j}]_{4\times(64\times64)} + \text{noise}$

fjd29@cam.ac.uk (University of Lille)
Theorem

Any matrix $A \in \mathbb{R}^{m \times n}$ can be factorised into a singular value decomposition (SVD),

$$A = USV^{T} \tag{1}$$

where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and $S \in \mathbb{R}^{m \times n}$ is diagonal with $r = \operatorname{rank}(A)$ leading positive entries. The p diagonal entries of S are denoted σ_i for i = 1, ..., p where $p = \min\{m, n\}$ and are called the singular values of A. They satisfy the property $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_p$.

Theorem

Let the SVD of A be given by (1). If $k < r = \operatorname{rank}(A)$ and $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$, then

$$\min_{\operatorname{rank}(B)=k} \|A - B\|_2 = \|A - A_k\|_2 = \sqrt{\sum_{i=k+1}^p \sigma_i^2}$$

fjd29@cam.ac.uk (University of Lille)

Data analysis

BSS with The Beatles

input image: 1

Image: A mathematical states and a mathem

æ

EELS BSS with The Beatles

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

EELS BSS with The Beatles

$[d_{i,j}]_{(134\times134)\times1024} = [p_{i,j}]_{(134\times134)\times4} \times [s_{i,j}]_{4\times1024}$

EELS BSS with The Beatles

$[d_{i,j}]_{(134\times134)\times1024} = [p_{i,j}]_{(134\times134)\times4} \times [s_{i,j}]_{4\times1024} + \text{Poisson noise}$

• Using the synthetic SIs we will test the performance of ICA at estimating the mixing matrix when using the first and second derivative as pre-treatment

Low SNR SI

- 4 elements: C, Sr, Ti, O
- 134×134 pixels
- 1024 energy channels
- Poisson noise
- Average number of counts: $\sim 10^3$

• Using the synthetic SIs we will test the performance of ICA at estimating the mixing matrix when using the first and second derivative as pre-treatment

Low SNR SI

- 4 elements: C, Sr, Ti, O
- 134×134 pixels
- 1024 energy channels
- Poisson noise
- Average number of counts: ~ 10³

High SNR SI

- 4 elements: C, Sr, Ti, O
- 134×134 pixels
- 1024 energy channels
- Poisson noise
- Average number of counts: ~ 10⁶

= ∽Q (~

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Original spectral components

Low SNR: windows methods

<ロ> (四) (四) (三) (三) (三)

E

Spinodally decomposed SnO_2/TiO_2 multilayers Noise reduction by dimensionality reduction

Spinodally decomposed SnO_2/TiO_2 multilayers Noise reduction by dimensionality reduction

Spinodally decomposed SnO_2/TiO_2 multilayers Independent component analysis

de la Peña et al., Ultramicroscopy 11 (2011) ~

Spinodally decomposed SnO_2/TiO_2 multilayers The effect of plural scattering

• Singular value decomposition

- is very useful for
 - Data denoising with no information loss
 - Rank estimation
 - Dimensionality reduction

- Singular value decomposition
 - is very useful for
 - Data denoising with no information loss
 - Rank estimation
 - Dimensionality reduction
 - The SNR improves with the number of trials in the dataset

- Singular value decomposition
 - is very useful for
 - Data denoising with no information loss
 - Rank estimation
 - Dimensionality reduction
 - The SNR improves with the number of trials in the dataset
- Independent component analysis
 - Separates sources from a mixture
 - The accuracy increases with SNR

- PCA: Jolliffe, Ian. Principal component analysis. John Wiley & Sons, Ltd, 2002.
- weighted PCA: Keenan, Michael R., and Paul G. Kotula. "Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images." Surface and Interface Analysis 36.3 (2004): 203-212.
- ICA: Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. Wiley- Interscience

- PCA variants: robust PCA, online PCA
- Other BSS methods: non-negative matrix factorization (NMF), vertex component analysis (VCA)
- Tensor decomposition: Spiegelberg, Jakob, Ján Rusz, and Kristiaan Pelckmans. "Tensor Decompositions for the Analysis of Atomic Resolution Electron Energy Loss Spectra." Ultramicroscopy (2017).

Outline

Introduction Introduction

2 Model based quatification

- The integration method
- The curve fitting method
- Multi-dimensional curve fitting
- Practical application: Analytical tomography

Machine learning

- Introduction
- EELS core-loss analysis

Summary

Summary

э

3

Image: A matrix

Image: A matrix

э

fjd29@cam.ac.uk (University of Lille)

Data analysis

ePSIC 2020 54 / 55

B → B

Image: A match a ma

Thank you all for you attention

▲□▶ ▲□▶ ▲ => ▲ => ▲ □▶ ▲ □▶

fjd29@cam.ac.uk (University of Lille)

Data analysis

<□▶ </₽▶ < 글▶ < 글▶ ePSIC 2020 55 / 55

Ξ