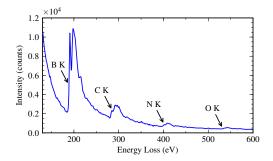
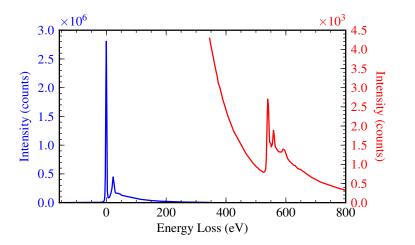
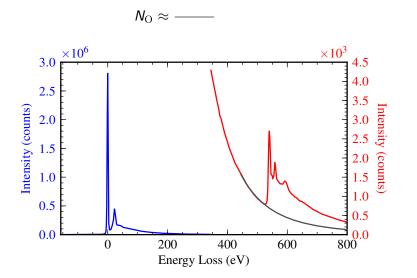
Introduction to EELS curve fitting

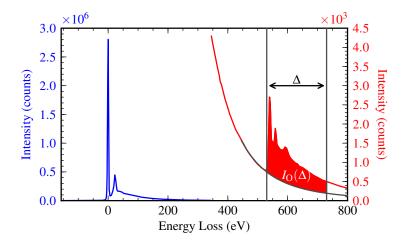

Francisco de la Peña


HyperSpy Workshop 2021 ePSIC Diamond Light Source (Cloud) 20th of April 2021

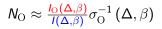
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

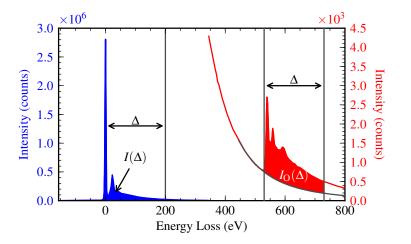

EELS spectrum from BN NPs

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

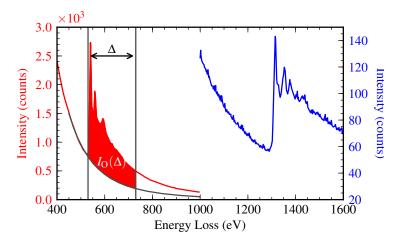

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

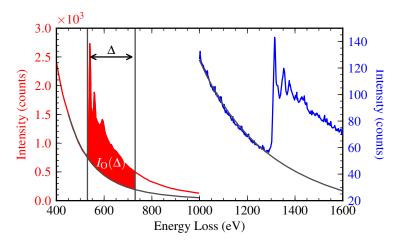
Model based quatification ○●○○○○○○○○○○○○○


The "windows" method

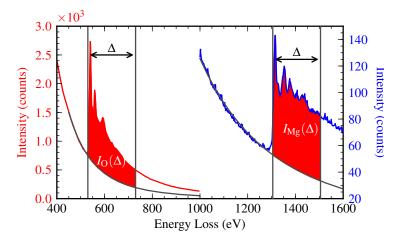

$$N_{\rm O} pprox rac{I_{\rm O}(\Delta, eta)}{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

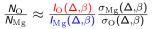

The "windows" method

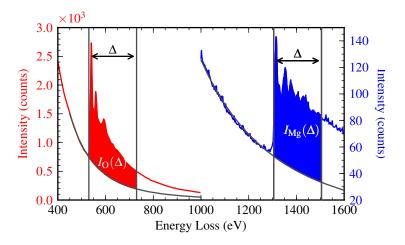

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

$$N_{\rm O} \approx \frac{I_{\rm O}(\Delta,\beta)}{I(\Delta,\beta)} \sigma_{\rm O}^{-1}(\Delta,\beta) \qquad N_{\rm Mg} \approx \frac{I_{\rm Mg}(\Delta,\beta)}{I(\Delta,\beta)} \sigma_{\rm Mg}^{-1}(\Delta,\beta)$$

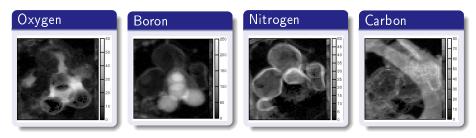

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

$$N_{\rm O} \approx \frac{I_{\rm O}(\Delta,\beta)}{I(\Delta,\beta)} \sigma_{\rm O}^{-1}(\Delta,\beta) \qquad N_{\rm Mg} \approx \frac{I_{\rm Mg}(\Delta,\beta)}{I(\Delta,\beta)} \sigma_{\rm Mg}^{-1}(\Delta,\beta)$$


▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで


$$N_{\rm O} \approx \frac{I_{\rm O}(\Delta,\beta)}{I(\Delta,\beta)} \sigma_{\rm O}^{-1}(\Delta,\beta) \qquad N_{\rm Mg} \approx \frac{I_{\rm Mg}(\Delta,\beta)}{I(\Delta,\beta)} \sigma_{\rm Mg}^{-1}(\Delta,\beta)$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで


The "windows" method

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへ⊙

EELS elemental of BN nanoparticle

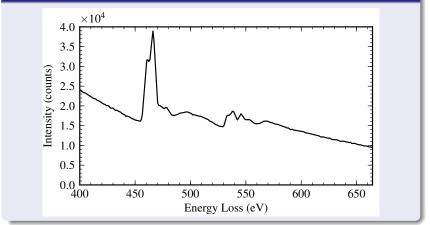
Arenal et al., Ultramicroscopy 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Overlapping edges

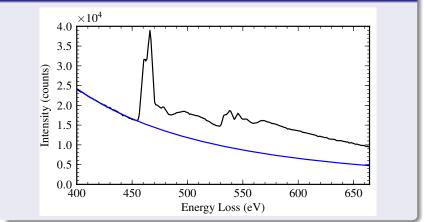
- Overlapping edges
- It always returns a result (what feels good) but, how do we know that it is correct?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

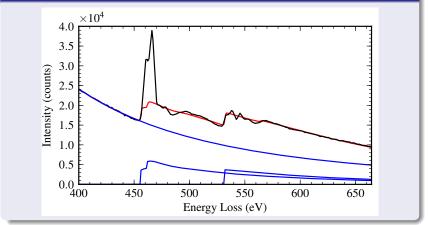

- Overlapping edges
- It always returns a result (what feels good) but, how do we know that it is correct?
- Only analyses a fraction of the available signal (non-optimal SNR)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

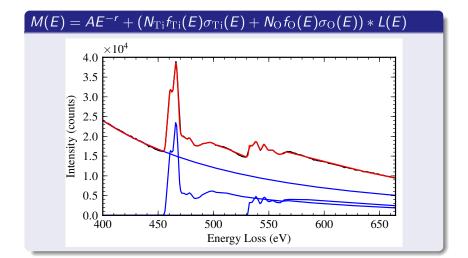
- Overlapping edges
- It always returns a result (what feels good) but, how do we know that it is correct?
- Only analyses a fraction of the available signal (non-optimal SNR)
- Useful information gets lost (fine structures changes, energy onset shifts...)


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$SrTiO_3$ Spectrum


▲ロト ▲舂 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

$\overline{M(E)} = AE^{-r}$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Assumptions

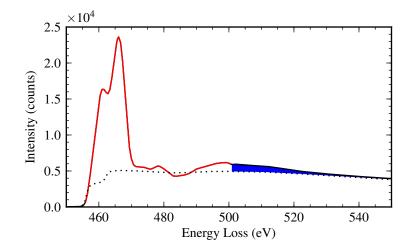
• There is a known function, f, that relates the independent variable X and the dependent variable Y. $Y \approx f(X, \beta) + \epsilon (f(X, \beta))$

Assumptions

- There is a known function, f, that relates the independent variable X and the dependent variable Y. $Y \approx f(X, \beta) + \epsilon (f(X, \beta))$
- The number of unknown parameters, β is equal or less thant the number of different observations of the independent variable

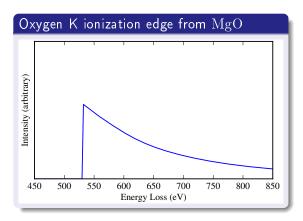
Assumptions

- There is a known function, f, that relates the independent variable X and the dependent variable Y. $Y \approx f(X, \beta) + \epsilon (f(X, \beta))$
- The number of unknown parameters, β is equal or less thant the number of different observations of the independent variable
- The probability distribution of the statistical error (ϵ) is known


Components of the model

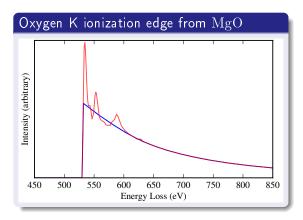
Parametric model of the high energy loss spectrum for elemental and bonding quantification:

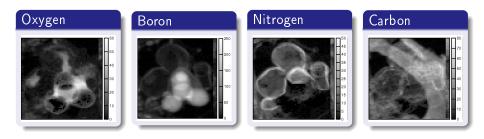
$$M(E; \text{parameters}) = AE^{-r} + \left(\sum_{i} N_{i}f_{i}(E)\int_{0}^{q(\beta)} \sigma_{i}(E,q) dq\right) * L(E)$$


- AE^{-r} : background model
- σ_i^{FS} : cross section of each ionization edge, *i*
- N_i : $\frac{\text{atoms}}{\text{nm}^2}$
- f_i(E): function that mimics the fine structure of each ionization edge, e.g. gaussian, fingerprints, splines...
- L(E): experimental low loss spectrum.

Why adding the fine structure to the model?

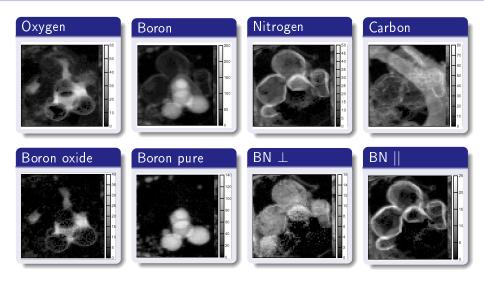
◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで


lonization edge fine structure


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

lonization edge fine structure

• In solids, the first \sim 40 eV are strongly modified by the final density of states \Rightarrow carries bonding information



EELS elemental and bonding maps of BN nanoparticle

Arenal et al., Ultramicroscopy 2008

EELS elemental and bonding maps of BN nanoparticle

Arenal et al., Ultramicroscopy 2008

• Regression analysis, in addition to estimate the value of $\beta,$ can estimate the error

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $\bullet\,$ Regression analysis, in addition to estimate the value of $\beta,$ can estimate the error

• The most common estimation method is non-linear least squares (*NLLS*), however this assumes that the noise is Gaussian distributed

- Regression analysis, in addition to estimate the value of $\beta,$ can estimate the error
- The most common estimation method is non-linear least squares (*NLLS*), however this assumes that the noise is Gaussian distributed
- If the noise distribution is known (e.g. Poissonian) we can use:

- \bullet Regression analysis, in addition to estimate the value of $\beta,$ can estimate the error
- The most common estimation method is non-linear least squares (*NLLS*), however this *assumes that the noise is Gaussian distributed*
- If the noise distribution is known (e.g. Poissonian) we can use:

Weighted non-linear least squares (WNNLS)

- Regression analysis, in addition to estimate the value of $\beta,$ can estimate the error
- The most common estimation method is non-linear least squares (*NLLS*), however this *assumes that the noise is Gaussian distributed*
- If the noise distribution is known (e.g. Poissonian) we can use:

- Weighted non-linear least squares (WNNLS)
- Maximum likelihood estimation (ML)

To keep in mind

• The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong

To keep in mind

- The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong
- In EELS the noise is a mixture of *Poisson and Gaussian noise*.

To keep in mind

- The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong
- In EELS the noise is a mixture of *Poisson and Gaussian noise*.

 WNNLS can approximate well Poissonian noise when the number of counts is high enough (almost always in EELS)

To keep in mind

- The estimation of the parameters value and error *will be wrong* if the noise probability distribution is wrong
- In EELS the noise is a mixture of *Poisson and Gaussian noise*.
- WNNLS can approximate well Poissonian noise when the number of counts is high enough (almost always in EELS)
- Non-linear parameter estimation is an iterative process that *is very sensitive to the starting parameters*

Key articles

• Steele, J., Titchmarsh, J., Chapman, J., and Paterson, J. (1985). A single-stage process for quantifying electron energy-loss spectra. Ultramicroscopy, 17(3):273–276.

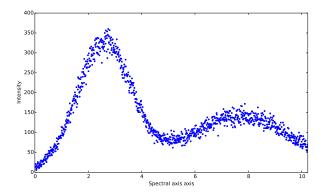
Key articles

- Steele, J., Titchmarsh, J., Chapman, J., and Paterson, J. (1985). A single-stage process for quantifying electron energy-loss spectra. Ultramicroscopy, 17(3):273–276.
- Manoubi, T., Tencé, M., Walls, M. G., and Colliex, C. (1990). Curve fitting methods for quantitative analysis in electron energy loss spectroscopy. Microscopy Microanalysis Microstructures, 1(1):23.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

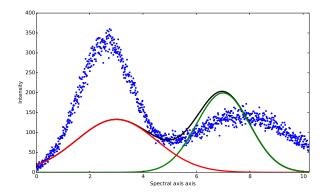
Key articles

- Steele, J., Titchmarsh, J., Chapman, J., and Paterson, J. (1985). A single-stage process for quantifying electron energy-loss spectra. Ultramicroscopy, 17(3):273–276.
- Manoubi, T., Tencé, M., Walls, M. G., and Colliex, C. (1990). Curve fitting methods for quantitative analysis in electron energy loss spectroscopy. Microscopy Microanalysis Microstructures, 1(1):23.

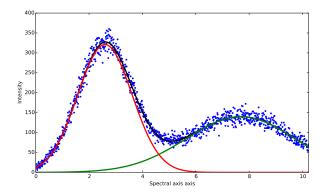

• Verbeeck, J. and Aert, S. V. (2004). Model based quantification of EELS spectra. Ultramicroscopy, 101(2-4):207-224.

Software

• EELSModel http://www.eelsmodel.ua.ac.be/ (open source)


- HyperSpy http://hyperspy.org (open source)
- Digital Micrograph

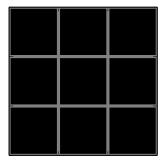
Non-linear optimisation routine


Set stating parameters.Fit.

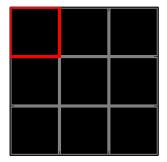
Non-linear optimisation routine

Set stating parameters.Fit.

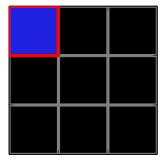
Non-linear optimisation routine



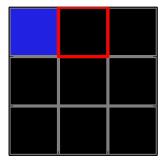
・ロト ・日ト ・ヨト

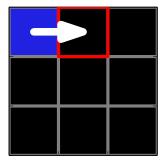

Ъþ

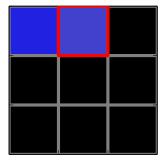
- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

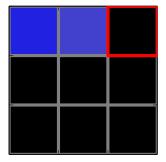


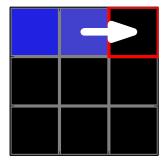
• Set stating parameters.

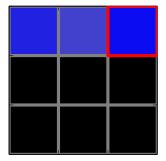

- Fit.
- Move to next element.
- Copy parameter values from previous fit.

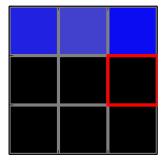

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

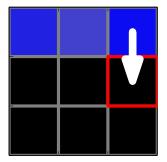

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

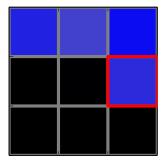

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

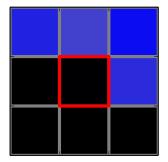

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

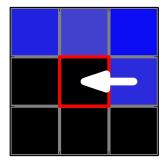
- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.



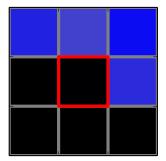
- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.



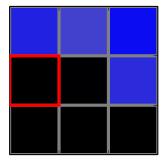
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

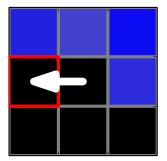
- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.



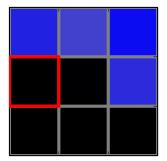
- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.



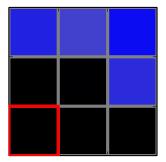
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

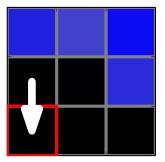
- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

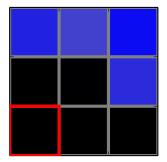


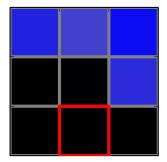
- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.


- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

- Set stating parameters.
- Fit.
- Move to next element.
- Copy parameter values from previous fit.

