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Model based quati�cation

EELS spectrum from BN NPs
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Model based quati�cation

The �windows� method
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The �windows� method

NO ≈ IO(∆,β)
I (∆,β) σ

−1

O (∆, β) NMg ≈ IMg(∆,β)
I (∆,β) σ

−1

Mg (∆, β)
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Model based quati�cation

The �windows� method

NO
NMg
≈ IO(∆,β)

IMg(∆,β)
σMg(∆,β)
σO(∆,β)
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Model based quati�cation

EELS elemental of BN nanoparticle

Oxygen Boron Nitrogen Carbon

Arenal et al., Ultramicroscopy 2008
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Some limitations of the �windows� method

Overlapping edges

It always returns a result (what feels good) but,
how do we know that it is correct?

Only analyses a fraction of the available signal (non-optimal
SNR)

Useful information gets lost (�ne structures changes, energy
onset shifts...)
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The curve �tting method: an example

SrTiO3 Spectrum
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Model based quati�cation

The curve �tting method: an example

M(E ) = AE−r
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Model based quati�cation

The curve �tting method: an example

M(E ) = AE−r + ITiσTi(E ) + IOσO(E )) ∗ L(E )
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Model based quati�cation

The curve �tting method: an example

M(E ) = AE−r + (NTifTi(E )σTi(E ) + NOfO(E )σO(E )) ∗ L(E )
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Model based quati�cation

Assumptions

There is a known function, f , that relates the independent

variable X and the dependent variable Y .
Y ≈ f (X , β) + ε (f (X , β))

The number of unknown parameters, β is equal or less thant
the number of di�erent observations of the independent
variable

The probability distribution of the statistical error (ε) is known
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Components of the model

Parametric model of the high energy loss spectrum for elemental
and bonding quanti�cation:

M(E ; parameters) = AE−r+

(∑
i

Ni fi (E )

∫ q(β)

0

σi (E , q) dq

)
∗L(E )

AE−r : background model

σFSi : cross section of each ionization edge, i

Ni : atoms/nm2

fi (E ): function that mimics the �ne structure of each
ionization edge, e.g. gaussian, �ngerprints, splines. . .

L(E ): experimental low loss spectrum.



Model based quati�cation

Why adding the �ne structure to the model?
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Model based quati�cation

Ionization edge �ne structure

In solids, the �rst ∼ 40 eV are strongly modi�ed by the �nal
density of states ⇒ carries bonding information

Oxygen K ionization edge from MgO
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EELS elemental and bonding maps of BN nanoparticle

Oxygen Boron Nitrogen Carbon

Boron oxide Boron pure BN ⊥ BN ||

Arenal et al., Ultramicroscopy 2008
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Parameter value and error estimation

Regression analysis, in addition to estimate the value of β, can
estimate the error

The most common estimation method is non-linear least
squares (NLLS), however this assumes that the noise is

Gaussian distributed

If the noise distribution is known (e.g. Poissonian) we can use:

Weighted non-linear least squares (WNNLS)
Maximum likelihood estimation (ML)
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To keep in mind

The estimation of the parameters value and error will be
wrong if the noise probability distribution is wrong

In EELS the noise is a mixture of Poisson and Gaussian noise.

WNNLS can approximate well Poissonian noise when the
number of counts is high enough (almost always in EELS)

Non-linear parameter estimation is an iterative process that is
very sensitive to the starting parameters
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Key articles
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Software

EELSModel http://www.eelsmodel.ua.ac.be/ (open source)

HyperSpy http://hyperspy.org (open source)

Digital Micrograph

http://www.eelsmodel.ua.ac.be/
http://hyperspy.org
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Fitting routine n-dimensions

Set stating parameters.

Fit.

Move to next element.

Copy parameter values
from previous �t.
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