Introduction to EELS curve fitting

Francisco de la Pefia

Université
de Lille

HyperSpy Workshop 2021
ePSIC Diamond Light Source (Cloud)
20t of April 2021



Model based quatification
©000

EELS spectrum from BN NPs
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The “windows” method
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The “windows” method
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EELS elemental of BN nanoparticle

Nitrogen

Arenal et al., Ultramicroscopy 2008
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Some limitations of the “windows" method

@ Overlapping edges

@ It always returns a result (what feels good) but,
how do we know that it is correct?

@ Only analyses a fraction of the available signal (non-optimal
SNR)

@ Useful information gets lost (fine structures changes, energy
onset shifts...)
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The curve fitting method: an example
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The curve fitting method: an example

M(E) =AE~"+ /TiUTi(E) + /OUo(E)) * L(E)
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The curve fitting method: an example

M(E) =AE~" + (NTifTi(E)UTi(E) == Nofo(E)Jo(E)) * L(E)
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Assumptions

@ There is a known function, f, that relates the independent
variable X and the dependent variable Y.
Y =~ f(X,8)+e(f(X,0))

@ The number of unknown parameters, 3 is equal or less thant
the number of different observations of the independent
variable

@ The probability distribution of the statistical error (€) is known



Model based quatification
0080000000

Components of the model

Parametric model of the high energy loss spectrum for elemental
and bonding quantification:

q(8)
M(E; parameters) = AE~"+ ZN,-)‘,-(E)/ oi (E,q)dqg |«L(E)
- 0

AE~": background model

of5: cross section of each ionization edge, i

N;: atoms/nm2
fi(E): function that mimics the fine structure of each
ionization edge, e.g. gaussian, fingerprints, splines. ..

o L(E): experimental low loss spectrum.
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Why adding the fine structure to the
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lonization edge fine structure

Oxygen K ionization edge from MgO

Intensity (arbitrary)

| | | | | | |
450 500 550 600 650 700 750 800 850
Energy Loss (eV)




Model based quatification
0000@00000

lonization edge fine structure

@ In solids, the first ~ 40¢eV are strongly modified by the final
density of states = carries bonding information

Oxygen K ionization edge from MgO
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EELS elemental and bonding maps of BN nanoparticle

Nitrogen

Arenal et al., Ultramicroscopy 2008
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EELS elemental and bonding maps of BN nanoparticle

Nitrogen

Arenal et al., Ultramicroscopy 2008
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Parameter value and error estimation

@ Regression analysis, in addition to estimate the value of 3, can
estimate the error

@ The most common estimation method is non-linear least
squares (NLLS), however this assumes that the noise is
Gaussian distributed

@ If the noise distribution is known (e.g. Poissonian) we can use:

o Weighted non-linear least squares (WNNLS)
e Maximum likelihood estimation (ML)
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To keep in mind

@ The estimation of the parameters value and error will be
wrong if the noise probability distribution is wrong

@ In EELS the noise is a mixture of Poisson and Gaussian noise.

@ WNNLS can approximate well Poissonian noise when the
number of counts is high enough (almost always in EELS)

@ Non-linear parameter estimation is an iterative process that is
very sensitive to the starting parameters
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(1985). A single-stage process for quantifying electron
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Key articles

o Steele, J., Titchmarsh, J., Chapman, J., and Paterson, J.
(1985). A single-stage process for quantifying electron
energy-loss spectra. Ultramicroscopy, 17(3):273-276.

e Manoubi, T., Tencé, M., Walls, M. G., and Colliex, C. (1990).
Curve fitting methods for quantitative analysis in electron
energy loss spectroscopy. Microscopy Microanalysis
Microstructures, 1(1):23.

@ Verbeeck, J. and Aert, S. V. (2004). Model based
quantification of EELS spectra. Ultramicroscopy,
101(2-4):207-224.
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Software

o EELSModel http://www.eelsmodel.ua.ac.be/ (open source)
e HyperSpy http://hyperspy.org (open source)
e Digital Micrograph


http://www.eelsmodel.ua.ac.be/
http://hyperspy.org
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Non-linear optimisation routine
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Non-linear optimisation routine
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Non-linear optimisation routine

o Fit.
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@ Set stating parameters.
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Fitting routine n-dimensions
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