Summary
TomopyRecon | |||||
Process category | Brief description | Computational demand for typical tomography data (low, medium, high) | Comment(s) | Reference(s) | Common alternative process(es) |
---|---|---|---|---|---|
reconstructor | TOmographic MOdel-BAsed Reconstruction (ToMoBAR) software. | medium-high. Note that there is 2D and 3D version of the plugin. 3D is more computationally demanding and doesn't exploit the MPI fully. | ToMoBAR is a library of direct and model-based regularised iterative reconstruction algorithms with a plug-and-play capability. Current Savu wrapper uses the regularised FISTA algorithm | ToMoBAR |
|
Parameters
Brief description |
---|
Savu Configurator command
>>> disp -avv ------------------------------------------------------------------------------------- TomobarRecon3d(savu.plugins.reconstructions.tomobar_recon_3D) A wrapper around TOmographic MOdel-BAsed Reconstruction (ToMoBAR) software for advanced iterative image reconstruction using _3D_ capabilities of regularisation. The plugin will run on one cluster node, i.e. it can be slow. 1) init_vol : None Dataset to use as volume initialiser (doesn't currently work with preview). 2) preview : [] A slice list of required frames. 3) log : True Take the log of the data before reconstruction (True or False). 4) centre_of_rotation : 453.5 Centre of rotation to use for the reconstruction. 5) in_datasets : [] Create a list of the dataset(s) to process. 6) ring_accelerator : 50.0 Acceleration constant for ring removal (use with care). 7) output_size : auto The dimension of the reconstructed volume (only X-Y dimension). 8) nonnegativity : ENABLE Nonnegativity constraint, choose Enable or None. 9) regularisation : ROF_TV To regularise choose methods ROF_TV, FGP_TV, SB_TV, LLT_ROF, NDF, Diff4th. 10) iterations : 15 Number of outer iterations for FISTA method. 11) edge_param : 0.01 Edge (noise) related parameter, relevant for NDF and Diff4th. 12) ratio : 0.95 Ratio of the m2asks diameter in pixels to the smallest edge size along given axis. 13) log_func : np.nan_to_num(-np.log(sino)) Override the default log function. 14) regularisation_parameter2 : 0.005 Regularisation (smoothing) value for LLT_ROF method. 15) NDF_penalty : Huber NDF specific penalty type Huber, Perona, Tukey. 16) tolerance : 1e-10 Tolerance to stop outer iterations earlier. 17) ordersubsets : 6 The number of ordered-subsets to accelerate reconstruction. 18) out_datasets : [] Create a list of the dataset(s) to create. 19) centre_pad : False Pad the sinogram to centre it in order to fill the reconstructed volume ROI for asthetic purposes. NB: Only available for selected algorithms and will be ignored otherwise. WARNING: This will significantly increase the size of the data and the time to compute the reconstruction). 20) regularisation_iterations : 400 The number of regularisation iterations. 21) regularisation_parameter : 0.0002 Regularisation (smoothing) value, higher the value stronger the smoothing effect. 22) force_zero : [None, None] Set any values in the reconstructed image outside of this range to zero. 23) vol_shape : fixed Override the size of the reconstuction volume with an integer value. 24) converg_const : power Lipschitz constant, can be set to a scalar value or automatic calculation using power methods. 25) time_marching_parameter : 0.002 Time marching parameter, relevant for (ROF_TV, LLT_ROF, NDF, Diff4th) penalties. 26) datafidelity : LS Data fidelity, Least Squares (LS) or PWLS. 27) outer_pad : False Pad the sinogram width to fill the reconstructed volume for asthetic purposes. Choose from True (defaults to sqrt(2)), False or float <= 2.1. NB: Only available for selected algorithms and will be ignored otherwise. WARNING: This will increase the size of the data and the time to compute the reconstruction). 28) ring_variable : 0.0 Regularisation variable for ring removal. ------------------------------------------------------------------------------------- >>>
Additional notes |
---|
Item | Parameter name | Parameter format | Example(s) | Comment(s) | |
---|---|---|---|---|---|
Parameter value | Effect | ||||
1 | reg_par | ||||
2 | log | The log parameter needs to be set to False, if PaganinFilter is applied beforehand. | |||
3 | algorithm | ||||
4 | filter_name | ||||
5 | preview | ||||
6 | centre_of_rotation | The default value of the centre_of_rotation parameter is 0.0, which normally needs to be manually modified to a more appropriate value or, if VoCentering is used beforehand in the process chain, then this parameter is automatically set to a value determined by this auto-centring process. | |||
7 | in_datasets | ||||
8 | ratio | ||||
9 | out_datasets | ||||
10 | centre_pad | ||||
11 | outer_pad | ||||
12 | n_iterations | ||||
13 | force_zero |
Usage
TBC.